问题
选择题
经长期观测人们在宇宙中已经发现了“双星系统”.“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1:m2=3:2.则可知( )
A.m1、m2做圆周运动的线速度之比为3:2
B.m1、m2做圆周运动的角速度之比为3:2
C.m1做圆周运动的半径为
L2 5
D.m2做圆周运动的半径为2 5L
答案
设双星运行的角速度为ω,由于双星的周期相同,则它们的角速度也相同,则根据牛顿第二定律得:
对m1:G
=m1ω 2r1 ①m1m2 L2
对m2:G
=m2ω2r2 ②m1m2 L2
由①:②得:r1:r2=m2:m1=2:3
又r2+r1=L,得r1=
L,r2=2 5
L3 5
由v=ωr,ω相同得:m1、m2做圆周运动的线速度之比为v1:v2=r1:r2=2:3.
故选C