问题 填空题
(理)已知对于任意正整数n,都有a1+a2+…+an=n3,则
lim
n→+∞
(
1
a2-1
+
1
a3-1
+…+
1
an-1
)
=______.
答案

∵当n≥2时,有a1+a2+…+an-1+an=n3

a1+a2+…+an-1=(n-1)3

两式相减,得an=3n2-3n+1,

1
an-1
=
1
3n(n-1)
=
1
3
1
n-1
-
1
n
),

1
a2-1
+
1
a3-1
+…+
1
an-1

=

1
3
(1-
1
2
)+
1
3
1
2
-
1
3
)+…+
1
3
1
n-1
-
1
n
),

=

1
3
(1-
1
n
).

lim
n→+∞
(
1
a2-1
+
1
a3-1
+…+
1
an-1
)

=

lim
n→∞
1
3
(1-
1
n
)

=

1
3

故答案为:

1
3

单项选择题
单项选择题