问题
填空题
(理)已知对于任意正整数n,都有a1+a2+…+an=n3,则
|
答案
∵当n≥2时,有a1+a2+…+an-1+an=n3,
a1+a2+…+an-1=(n-1)3,
两式相减,得an=3n2-3n+1,
∴
=1 an-1
=1 3n(n-1)
( 1 3
-1 n-1
),1 n
∴
+1 a2-1
+…+1 a3-1
,1 an-1
=
(1-1 3
)+1 2
( 1 3
-1 2
)+…+1 3
( 1 3
-1 n-1
),1 n
=
(1-1 3
).1 n
∴
(lim n→+∞
+1 a2-1
+…+1 a3-1
)1 an-1
=lim n→∞
(1-1 3
)1 n
=
.1 3
故答案为:
.1 3