问题 解答题
集合A={x|x2-2ax+4a2-3=0},B={x|x2-x-2=0},C={x|x2+2x-8=0}.
(1)是否存在实数a使A∩B=A∪B?若存在,试求a的值,若不存在,说明理由;
(2)若∅
A∩B,A∩C=∅,求a的值.
答案

(1)假设存在存在实数a使A∩B=A∪B,即A=B.

由题意得B={x|x2-x-2=0}={-1,2},故-1,2是方程x2-2ax+4a2-3=0的两个根,

-1+2=2a
-1×2=4a2-3
∴a=
1
2

(2)解方程x2+2x-8=0,得C={-4,2},∵∅

A∩B,A∩C=∅,∴2∉A,-1∈A,

即x=-1是方程x2-2ax+4a2-3=0的根,且x=2不是此方程的根,

将x=-1代入,得(-1)2+2a+4a2-3=0,

∴a=-1或a=

1
2

检验知a=-1即为所求.

单项选择题
单项选择题