问题
解答题
已知复数z1满足:(1+2i)
(1)求复数z1 (2)求满足|zn|≤13的最大正整数n. |
答案
(1)设z1=a+bi(a,b∈R),则
=a-biz1
(1+2i)(a-bi)=4+3i
a+2b+(2a-b)i=4+3i
a+2b=4 2a-b=3
解得:a=2 b=1
∴z1=2+i
(2)由zn+1-zn=2+2i(n∈N*)得:
z2-z1=2+2i
z3-z2=2+2i
z4-z3=2+2i
…
zn-zn-1=2+2i(n∈z,n≥2)
累加得zn-z1=2(n-1)+(n-1)i(n∈N*)
zn=2n+(2n-1)i(n∈N*)
|zn|=
=4n2+(2n-1)2 8n2-4n+1
令|zn|≤13,即8n2-4n+1≤169
2n2-n-42≤0
∴
≤n≤1- 1+8×42 4
<51+ 1+8×42 4
∴n的最大整数取值是4.