问题 解答题

已知A、B、C为三个锐角,且A+B+C=π.若向量=(2-2sinA,cosA+sinA)与向量=(cosA-sinA,1+sinA)是共线向量.(Ⅰ)求角A;(Ⅱ)求函数y=2sin2B+cos的最大值.

 

答案

(Ⅰ)A=  (Ⅱ)  ymax=2.

(Ⅰ)∵、共线,∴(2-2sinA)(1+sinA)=(cosA+sinA)(cosA-sinA),则sin2A=,又A为锐角,所以sinA=,则A=.

(Ⅱ)y=2sin2B+cos=2sin2B+cos

=2sin2B+cos(-2B)=1-cos2B+cos2B+sin2B

=sin2B-cos2B+1=sin(2B-)+1.

∵B∈(0,),∴2B-∈(-,),∴2B-=,解得B=,ymax=2.

单项选择题
判断题