问题 填空题
数列{
1
n(n+1)
}
的前n项和为Sn,则
lim
n→∞
Sn
=______.
答案

由题意可得an=

1
n(n+1)
=
1
n
-
1
n+1

Sn=

1
1×2
+
1
2×3
+… +
1
n(n+1)

=1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-

1
n+1
=
n
n+1

lim
n→∞
Sn=
lim
n→∞
n
n+1
=
lim
n→∞
1
1+
1
n
=1

故答案为:1

单项选择题
单项选择题