问题
填空题
求曲线y=
|
答案
由题意得,y′=
=(ex)′(x+1)-ex(x+1)′ (x+1)2
,xex (x+1)2
∴在点(1,
)处的切线斜率k=e 2
=e (1+1)2
,e 4
则所求的切线方程为:y-
=e 2
(x-1),即ex-4y+e=0,e 4
故答案为:ex-4y+e=0.
求曲线y=
|
由题意得,y′=
=(ex)′(x+1)-ex(x+1)′ (x+1)2
,xex (x+1)2
∴在点(1,
)处的切线斜率k=e 2
=e (1+1)2
,e 4
则所求的切线方程为:y-
=e 2
(x-1),即ex-4y+e=0,e 4
故答案为:ex-4y+e=0.