问题 计算题

如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点。D点位于水桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8m的圆环剪去左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离为R,P点到桌面右侧边缘的水平距离为2R。用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为,物块从D点飞离桌面后恰好由P点沿切线落入圆轨道。g=10m/s2,求:

(1)BD间的水平距离;

(2)判断m2能否沿圆轨道到达M点;

(3)m2释放后在桌面上运动的过程中克服摩擦力做的功。

答案

解:(1)设物块由D点以初速度做平抛,落到P点时其竖直速度为 

     

      得m/s

      或设平抛用时为t,则

      在竖直方向上:

      在水平方向上:

      可得

      在桌面上过B点后初速m/s,加速度a=-4m/s2

      BD间位移为m

(2)若物块能沿轨道到达M点,其速度为,由机械能守恒定律得: 

     

      轨道对物块的压力为FN,则

      解得

      即物块不能到达M点

(3)设弹簧长为AC时的弹性势能为Ep,物块与桌面间的动摩擦因数为μ

      释放m1时:

      释放m2时:

      且m1=2m2

      解得J

      m2释放后在桌面上运动过程中克服摩擦力做功为Wf,则由能量转化及守恒定律得:

     

      解得Wf=5.6J

单项选择题 A1/A2型题
单项选择题