问题
问答题
甲、乙 两颗人造地球卫星在同一轨道平面上的不同高度处同向运行,甲距地面高度为地球半径的0.5倍,乙甲距地面高度为地球半径的5倍,两卫星在某一时刻正好位于地球表面某处的正上空,试求:
(1)两卫星运行的速度之比;
(2)乙卫星至少经过多少周期时,两卫星间的距离达到最大?
答案
(1)卫星的向心力由万有引力提供,
=GMm r2
,mv2 r
得:v=GM r
所以:
=v1 v2
=r2 r1
=1+5 1+0.5 2 1
(2)卫星的向心力由万有引力提供:
=mGMm r2 4π2r T2
得:T=4π2r3 GM
所以:
=T甲 T乙
=r 31 r 32 1 8
又因为卫星间的距离第一次最大时,它们转过的角度差π:
t-2π T甲
t=π2π T乙
解得:t=T乙 14
答:(1)两卫星运行的速度之比2:1;
(2)乙卫星至少经过
周期时,两卫星间的距离达到最大.T乙 14