问题
选择题
已知P在抛物线y2=4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )
|
答案
设准线为l:x=-1,焦点为F(1,0).
如图所示,过点P作PM⊥l,垂足为M,连接FM,则|PM|=|FP|.
故当PQ∥x轴时,|PM|+|PQ|取得最小值|QM|=2-(-1)=3.
设点P(x,1),代入抛物线方程12=4x,解得x=
,∴P(1 4
,1).1 4
故选B.