问题 解答题

已知函数F(x)=ax-lnx(a>0)

(1)若曲线y=f(x)在点(l,f(l))处的切线方程为y=2x+b,求a,b的值;

(2)若当x∈[l,e]时,函数f(x)的最小值是4,求函数f(x)在该区间上的最大值.

答案

(1)求导函数,可得f′(x)=a-

1
x
(x>0)…(1分)

由f′(1)=a-1=2,∴a=3…(2分)

∴f(1)=3…(3分)

∴b=f(1)-2×1=1…(4分)

(2)定义域为(0,+∞),f′(x)=a-

1
x
=
ax-1
x
…(5分)

由f′(x)>0,得x>

1
a
,f′(x)<0,得0<x<
1
a

∴f(x)在(0,

1
a
)上单调递减,在(
1
a
,+∞
)单调递增…(7分)

1
a
≤1,即a≥1时,f(x)在[1,e]单调递增,∴f(x)min=f(1)=a=4,此时f(x)max=f(e)=4e-1…(9分)

1
a
≥e,即0<a≤
1
e
时,f(x)在[1,e]单调递减,∴f(x)min=f(e)=ae-1=4,∴a=
5
e
1
e
(不合题意)…(11分)

1<

1
a
<e,即
1
e
<a<1
时,f(x)在(1,
1
a
)单调递减,在(
1
a
,e)单调递增,∴f(x)min=f(
1
a
)=1+lna=4

此时a=e3(不合题意)

综上知,f(x)max=4e-1…(13分)

选择题
单项选择题