问题
解答题
已知复数z满足:|z|=1+3i-z,求
|
答案
设z=a+bi(a,b∈R),
而|z|=1+3i-z,即
-1-3i+a+bi=0,a2+b2
则
,解得
+a-1=0a2+b2 b-3=0
,a=-4 b=3
z=-4+3i,
∴
=(1+i)2(3+4i) 2z
=(1+i)2(3+4i) 2(-4+3i)
=1.(3i+4i2) -4+3i
已知复数z满足:|z|=1+3i-z,求
|
设z=a+bi(a,b∈R),
而|z|=1+3i-z,即
-1-3i+a+bi=0,a2+b2
则
,解得
+a-1=0a2+b2 b-3=0
,a=-4 b=3
z=-4+3i,
∴
=(1+i)2(3+4i) 2z
=(1+i)2(3+4i) 2(-4+3i)
=1.(3i+4i2) -4+3i