问题
解答题
设z∈C,z+2i,
|
答案
设z=x+yi(x,y∈R,
∴z+2i=x+(y+2)i,
∵z+2i是实数,
∴y+2=0,解得y=-2,
又
z |
2-i |
x+yi |
2-i |
(x+yi)(2+i) |
(2-i)(2+i) |
2x-y |
5 |
x+2y |
5 |
∵
z |
2-i |
∴
x+2y |
5 |
∴z=4-2i.
. |
z |
∴ω=z2+3
. |
z |
=12-16i+12+6i-4
=20-10i.
设z∈C,z+2i,
|
设z=x+yi(x,y∈R,
∴z+2i=x+(y+2)i,
∵z+2i是实数,
∴y+2=0,解得y=-2,
又
z |
2-i |
x+yi |
2-i |
(x+yi)(2+i) |
(2-i)(2+i) |
2x-y |
5 |
x+2y |
5 |
∵
z |
2-i |
∴
x+2y |
5 |
∴z=4-2i.
. |
z |
∴ω=z2+3
. |
z |
=12-16i+12+6i-4
=20-10i.