问题
解答题
设过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若
(1)求点P的轨迹M的方程; (2)过F(2,0)的直线与轨迹M交于A,B两点,求
|
答案
(1)∵过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,
∴Q(-x,y),设A(a,0),B(0,b),
∵O为坐标原点,∴
=(x,y-b),BP
=(a-x,-y),PA
=(-x,y),OQ
=(-a,b),AB
∵
=3BP
且PA
•OQ
=4,AB
∴
,x=3(a-x) y-b=-3y ax+by=4
解得点P的轨迹M的方程为
+y2=1.x2 3
(2)设过F(2,0)的直线方程为y=kx-2k,
联立
,得(3k2+1)x2-12k2x+12k2-3=0,y=kx-2k
+y2=1x2 3
设A(x1,y1),B(x2,y2),则x1+x2=
,x1x2=12k2 3k2+1
,12k2-3 3k2+1
=(x1-2,y1),FA
=(x2-2,y2),FB
∴
•FA
=(x1-2)(x2-2)+y1y2FB
=(1+k2)(x1-2)(x2-2)
=(1+k2)[x1x2-2(x1+x2)+4]
=(1+k2)(
-12k2-3 3k2+1
+4)24k2 3k2+1
=k2+1 3k2+1
=
+1 3
,2 9k2+3
∴当k2→∞
•FA
的最小值→FB
;当k=0时,1 3
•FA
的最大值为1.FB
∴
•FA
的取值范围是(FB
,1].1 3