问题 解答题
设过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,O为坐标原点,若
BP
=3
PA
OQ
AB
=4

(1)求点P的轨迹M的方程;
(2)过F(2,0)的直线与轨迹M交于A,B两点,求
FA
FB
的取值范围.
答案

(1)∵过点P(x,y)的直线分别与x轴和y轴交于A,B两点,点Q与点P关于y轴对称,

∴Q(-x,y),设A(a,0),B(0,b),

∵O为坐标原点,∴

BP
=(x,y-b),
PA
=(a-x,-y),
OQ
=(-x,y),
AB
=(-a,b)

BP
=3
PA
OQ
AB
=4

x=3(a-x)
y-b=-3y
ax+by=4

解得点P的轨迹M的方程为

x2
3
+y2=1.

(2)设过F(2,0)的直线方程为y=kx-2k,

联立

y=kx-2k
x2
3
+y2=1
,得(3k2+1)x2-12k2x+12k2-3=0,

设A(x1,y1),B(x2,y2),则x1+x2=

12k2
3k2+1
,x1x2=
12k2-3
3k2+1

FA
=(x1-2,y1),
FB
=(x2-2,y2),

FA
FB
=(x1-2)(x2-2)+y1y2

=(1+k2)(x1-2)(x2-2)

=(1+k2)[x1x2-2(x1+x2)+4]

=(1+k2)(

12k2-3
3k2+1
-
24k2
3k2+1
+4)

=

k2+1
3k2+1

=

1
3
+
2
9k2+3

∴当k2→∞

FA
FB
的最小值→
1
3
;当k=0时,
FA
FB
的最大值为1.

FA
FB
的取值范围是(
1
3
,1].

单项选择题
填空题