问题 解答题
(1)若两条曲线的极坐标方程分别为ρ=1与ρ=2cos(θ+
π
3
)
,它们相交于A,B两点,求线段AB的长.
(2)过点P(-3,0)且倾斜角为30°直线和曲线
x=t+
1
t
y=t-
1
t
 (t为参数)
相交于A、B两点.求线段AB的长.
答案

(1):由ρ=1得x2+y2=1,

又∵ρ=2cos(θ+

π
3
)=cosθ-
3
sinθ,∴ρ2=ρcosθ-
3
ρsinθ

x2+y2-x+

3
y=0,(4分)

x2+y2=1
x2+y2-x+
3
y=0

A(1,0),B(-

1
2
,-
3
2
),(6分)

AB=

(1+
1
2
)
2
+(0+
3
2
)
2
=
3
(8分)

(2).直线的参数方程为

x=-3+
3
2
s
y=
1
2
s
(s为参数),(10分)

曲线

x=t+
1
t
y=t-
1
t
(t为参数)可以化为x2-y2=4.(12分)

将直线的参数方程代入上式,得s2-6

3
s+10=0.

设A、B对应的参数分别为s1,s2

s1+s2=6

3
s1s2=10.(14分)

AB=|s1-s2|=

(s1+s2)2-4s1s2
=2
17
.(16分)

选择题
解答题