问题
填空题
点P(x,2,1)到Q(1,1,2),R(2,1,1)的距离相等,则x的值为______.
答案
∵P(x,2,1)、Q(1,1,2),
∴|PQ|=
=(x-1)2+(2-1)2+(1-2)2 x2-2x+3
同理可得|PR|=
=(x-2)2+(2-1)2+(1-1)2 x2-4x+5
∵|PQ|=|PR|,
∴
=x2-2x+3
,解之得x=1x2-4x+5
故答案为:1
点P(x,2,1)到Q(1,1,2),R(2,1,1)的距离相等,则x的值为______.
∵P(x,2,1)、Q(1,1,2),
∴|PQ|=
=(x-1)2+(2-1)2+(1-2)2 x2-2x+3
同理可得|PR|=
=(x-2)2+(2-1)2+(1-1)2 x2-4x+5
∵|PQ|=|PR|,
∴
=x2-2x+3
,解之得x=1x2-4x+5
故答案为:1