问题 解答题
已知点A(0,
3
)
和圆O1x2+(y+
3
)2=16
,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.
答案

由题意,可得

圆O1x2+(y+

3
)2=16是以O1(0,-
3
)为圆心,半径r=4的圆

∵点P在半径O1M上,且|PM|=|PA|,

∴|O1P|+|PA|=|O1P|+|PM|=|O1M|=4,

可得点P到A(0,

3
),O1(0,-
3
)的距离之和为4(常数)

因此,点P的轨迹是以点A(0,

3
),O1(0,-
3
)为焦点的椭圆,

∵焦点在y轴上,c=

3
且2a=4,

∴a=2得a2=4,b2=a2-c2=4-3=1,椭圆方程为x2+

y2
4
=1

综上所述,点P的轨迹方程为x2+

y2
4
=1.

单项选择题 B1型题
单项选择题