问题
填空题
若x1,x2分别为三次函数f(x)=
|
答案
求导函数可得f′(x)=x2-4x2+3
令f′(x)=x2-4x2+3>0,可得x<1或x>3;令f′(x)=x2-4x2+3<0,可得1<x<3
∴1,3是函数的极值点
∴(1,0)为双曲线的顶点,(3,0)为双曲线的焦点
∴a=1,c=3
∴e=
=3c a
故答案为3.
若x1,x2分别为三次函数f(x)=
|
求导函数可得f′(x)=x2-4x2+3
令f′(x)=x2-4x2+3>0,可得x<1或x>3;令f′(x)=x2-4x2+3<0,可得1<x<3
∴1,3是函数的极值点
∴(1,0)为双曲线的顶点,(3,0)为双曲线的焦点
∴a=1,c=3
∴e=
=3c a
故答案为3.