问题
填空题
设a,b是方程||2x-1|-x|=2的两个不相等的根,则
|
答案
∵||2x-1|-x|=2,
∴|2x-1|-x=2或-2,
∴|2x-1|=x+2或|2x-1|=x-2,
当2x-1≥0时,2x-1=x+2,解得x=3;
当2x-1<0时,2x-1=-x-2,解得x=-
;1 3
或当2x-1≥0时,2x-1=x-2,解得x=-1(舍去);
当2x-1<0时,2x-1=-x+2,解得x=1(舍去);
∴a=3,b=-
,1 3
∴
=a2+b2 a+b
=32+(-
)21 3 3- 1 3
=9 1 9 2 2 3
×82 9
=3 8
.41 12
故答案为
.41 12