问题
选择题
在△ABC中,已知向量
|
答案
∵
•AB
=cos18°•2cos63°+cos72°•2cos27°AC
=2(cos18°sin27°+sin18°cos27°)
=2sin(18°+27°)=2sin45°=
,2
|
|=AB
=cos218°+cos272°
=1,cos218°+sin218°
|
|=AC
=4cos263°+4cos227°
=2,4(sin227°+cos227°)
故cos∠BAC=
=
•AB AC |
|•|AB
|AC
,又0°≤∠BAC≤180°,2 2
所以∠BAC=45°
故选A