问题 选择题
已知向量
a
=(cos75°,sin75°),
b
=(cos15°,sin15°),则
a
-
b
b
的夹角为(  )
A.30°B.60°C.120°D.150°
答案

∵cos75°=cos(90°-15°)=sin15°,

sin75°=sin(90°-15°)=cos15°

a
=(cos75°,sin75°)=(sin15°,cos15°)

a
-
b
=(sin15°-cos15°,cos15°-sin15°),

∴(

a
-
b
)•
b
=(sin15°-cos15°)cos15°+(cos15°-sin15°)sin15°

=2sin15°cos15°-(cos215°+sin215°)=sin30°-1=-

1
2

又可得|

a
-
b
|=
(sin15°-cos15°)2+(cos15°-sin15°)2

=

2(sin215°+cos215°-2sin15°cos15°)
=
2(1-sin30°)
=1,

|

b
|=
cos215°+sin215°
=1

∴cos<

a
-
b
b
>=
(
a
-
b
)•
b
|
a
-
b
||
b
|
=
-
1
2
1×1
=-
1
2

又∵0°≤<

a
-
b
b
>≤180°,

a
-
b
b
的夹角<
a
-
b
b
>为120°

故选C

改错题
多项选择题