问题 填空题

如图所示,固定转轴的半径为r,通过绕在轴上的细线悬挂一质量为M的重物,轴与细线的质量均不计,轴四周有四根轻杆,杆端安装四个小球,最高位置的小球质量为2m,其余三个小球的质量均为m,球离轴心的距离均为R.现从静止开始释放,整个装置发生运动,则当最高位置的小球第一次转至最低位置时,物体M的速度大小为______.

答案

系统释放的势能等于系统的动能的增加,释放的势能为:△EP=mgR+Mgπr

设此时M的速度为v,则转轴的角速度为

v
r
,四个小球的线速度为
vR
r

因此系统的动能△EK=0.5Mv2+3×0.5m(

vR
r
)2+0.5×2m(
vR
r
)
2

解得:v=r

2g(2mR+Mπr)
5mR2+Mr2

故答案为:r

2g(2mR+Mπr)
5mR2+Mr2

多选题
单项选择题