问题 解答题
观察下列各式及验证过程:
N=2时有式①:
2
3
=
2+
2
3
       N=3时有式②:
3
8
=
3+
3
8

式①验证:
2
3
=
23
3
=
(23-2)+2
22-1
=
2+
2
3

式②验证:
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

(1)针对上述式①、式②的规律,请写出n=4时变化的式子;
(2)请写出满足上述规律的用n(n为任意自然数,且n≥2)表示的等式,并加以验证.
答案

(1)当n=4时,则4×

4
15
=
43
15
=
(43-4)+4
42-1
=
4(42-1)+4
42-1
=
4+
4
15

(2)n

n
n2-1
=
n+
n
n2-1
.证明如下:

左边=

n3
n2-1
=
(n3-n)+n
n2-1
=
n+
n
n2-1
=右边,

则等式成立.

选择题
选择题