问题 解答题
已知向量|
a
|=(cosθ,sinθ)和|
b
|=(
2
-sinθ,cosθ),θ∈[
11π
12
17π
12
].
(1)求|
a
+
b
|的最大值;
(2)若|
a
+
b
|=
4
10
5
,求sin2θ的值.
答案

(1)

a
+
b
=(cosθ-sinθ+
2
,cosθ+sinθ).

|

a
+
b
|=
(cosθ-sinθ+
2
)
2
+(cosθ+sinθ)2

=

4+2
2(cosθ-sinθ)
=
4+4cos(θ+
π
4
)
=2
1+cos(θ+
π
4
)
.(3分)

θ∈[

11π
12
17π
12
],∴
6
≤θ+
π
4
3

-

3
2
≤cos(θ+
π
4
)≤
1
2
.(5分)

|

a
b
|max=
6
.(7分)

(2)由已知|

a
+
b
|=
4
10
5
,得cos(θ+
π
4
)=
3
5
.(9分)

sin2θ=-cos2(θ+

π
4
)

=1-2cos2(θ+

π
4
)

=1-2×

9
25
=
7
25
.(12分)

选择题
选择题