问题 解答题
观察下列各式及证明过程:(1)
1
2
-
1
3
=
1
2
2
3
;(2)
1
2
(
1
3
-
1
4
)
=
1
3
3
8
;(3)
1
3
(
1
4
-
1
5
)
=
1
4
4
15

验证:
1
2
-
1
3
=
1
2×3
=
2
22×3
=
1
2
2
3
1
2
(
1
3
-
1
4
)
=
1
2×3×4
=
3
32×4
=
1
3
3
8

a.按照上述等式及验证过程的基本思想,猜想
1
4
(
1
5
-
1
6
)
的变形结果并进行验证;
b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.
答案

(1)

1
4
(
1
5
-
1
6
)
=
1
5
5
24

验证:

1
4
(
1
5
-
1
6
)
=
1
4×5×6
=
5
52×6
=
1
5
5
24

(2)

1
n
(
1
n+1
-
1
n+2
)
=
1
n+1
n+1
(n+1)2-1
1
n
(
1
n+1
-
1
n+2
)
=
1
n+1
n+1
n•(n+2)

验证:

1
n
(
1
n+1
-
1
n+2
)
=
1
n(n+1)(n+2)
=
n+1
n(n+1)2(n+2)
=
1
n+1
n+1
n(n+2)

判断题
问答题 简答题