问题 解答题
已知
a
=(sinA,cosA),
b
=(cosC,sinC),若
3
a
b
=sin2B,
a
b
的夹角为θ,且A、B、C为三角形ABC的内角.
求(1)∠B      
(2)cos
θ
2
答案

(1)

a
b
=sinAcosC+cosAsinC=sin(A+C)=sin(π-B)=sinB.

3
a
b
=sin2B,

3
sinB=2sinBcosB,

∵sinB≠0,

∴cosB=

3
2

∵B∈(0,π),

B=

π
6

(2)∵|

a
|=
sin2A+cos2A
=1,|
b
|
=
cos2C+sin2C
=1.

∴cosθ=

a
b
|
a
||
b
|
=
sinB
1×1
=
1
2

又∵θ∈[0,π],

θ=

π
3

cos

θ
2
=cos
π
6
=
3
2

单项选择题 A1/A2型题
选择题