问题 填空题
lim
n→∞
(a+1)n+1
n+2
=2(a∈R),则
lim
x→1
ax2-3x+2
x-a
=______.
答案

lim
n→∞
(a+1)n+1
n+2
=2=
lim
n→∞
 
a+1+
1
n
1+
2
n
=a+1,∴a=1.

lim
x→1
ax2-3x+2
x-a
=
lim
n→∞
 
(x-1)(x-2)
x-1
=
lim
n→∞
(x-2)=
lim
n→∞
 (-1)=-1,

故答案为-1.

单项选择题
单项选择题