问题
填空题
若
|
答案
∵lim n→∞
=2=(a+1)n+1 n+2 lim n→∞
=a+1,∴a=1.a+1+ 1 n 1+ 2 n
则 lim x→1
=ax2-3x+2 x-a lim n→∞
=(x-1)(x-2) x-1
(x-2)=lim n→∞
(-1)=-1,lim n→∞
故答案为-1.
若
|
∵lim n→∞
=2=(a+1)n+1 n+2 lim n→∞
=a+1,∴a=1.a+1+ 1 n 1+ 2 n
则 lim x→1
=ax2-3x+2 x-a lim n→∞
=(x-1)(x-2) x-1
(x-2)=lim n→∞
(-1)=-1,lim n→∞
故答案为-1.