问题
解答题
已知平面向量
(1)当
(2)若
|
答案
(1)由条件得:
+2xa
=-yb
+(4-2x2)a
,b
∴(1+y)
+(2x-4+2x2)a
=b
,0
∵向量
与a
不共线,b
∴
,解得y=-1,x=1或x=-2.1+y=0 2x2+2x-4=0
(2)∵
•a
=cosb
sinπ 6
+sin(-π 6
)cosπ 6
=0,∴π 6
⊥a b
又∵
⊥c
,∴d
•c
=0,又由条件可知,|d
|=|a
|=1b
∴
•c
=(d
+2xa
)•[-yb
+(4-2x2)a
]b
=-y
2-2xya
•a
+(4-2x2)b
•a
+2x(4-2x2)b
2b
=-y+2x(4-2x2)=0,∴y=8x-4x3,
即f(x)=8x-4x3