问题 问答题

如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直轨道与圆弧轨道相切于C点,其中圆心OBE在同一水平面上,OD竖直,∠COD=θ,且θ<5°。现有一质量为m的小物体(可以看作质点)从斜面上的A点静止滑下,小物体与BC间的动摩擦因数为,现要使小物体第一次滑入圆弧轨道即恰好做简谐运动(重力加速度为g)。求:

小物体过D点时对轨道的压力大小                               

直轨道AB部分的长度S                              

答案

小题1: F=3mg-2mgcosθ 

小题2: S=(μcotθ-cotθ)R                            

小题1:小物体下滑到C点速度为零才能第一次滑入圆弧轨道即恰好做简谐运动

CD由机械能守恒定律有:   mgR(1-cosθ)=                      在D点用向心力公式有:   F-mg=m                              解以上二个方程可得:    F=3mg-2mgcosθ                       

小题2:从AC由动能定理有:

mgsinθ(S+Rcotθ)- μmgcosθ·Rcotθ="0                                             "

解方程得:    S=(μcotθ-cotθ)R                         

单项选择题
填空题