问题
解答题
已知点A(0,-2),B(0,4),动点P(x,y)满足
(1)求动点P的轨迹方程; (2)设(1)中所求轨迹与直线y=x+b交于C、D两点,且OC⊥OD(O为原点),求b的值. |
答案
(1)∵动点P(x,y)满足
•PA
=y2-8,PB
∴(-x,-2-y)•(-x,4-y)=y2-8,
∴x2+y2-2y-8=y2-8,化为x2=2y.
∴动点P的轨迹方程为x2=2y;
(2)设C(x1,y1),D(x2,y2).联立
,y=x+b x2=2y
化为x2-2x-2b=0,∴△=4+8b>0.
∴x1+x2=2,x1x2=-2b.(*)
∵
⊥OC
,∴x1x2+y1y2=x1x2+(x1+b)(x2+b)=0,OD
化为2x1x2+b(x1+x2)+b2=0,
把(*)代入上式得-4b+2b+b2=0,解得b=0或2.满足△>0.
∴b=0或2.