问题
填空题
已知函数f(x)满足f(2)=3,f′(2)=1,则
|
答案
∵f(2)=3,f′(2)=1,由罗比达法则可得lim x→2
=3x-2f(x) x-2 lim x→2
=3-2f′(2) 1
(3-2×1)=1,lim x→2
故答案为 1.
已知函数f(x)满足f(2)=3,f′(2)=1,则
|
∵f(2)=3,f′(2)=1,由罗比达法则可得lim x→2
=3x-2f(x) x-2 lim x→2
=3-2f′(2) 1
(3-2×1)=1,lim x→2
故答案为 1.