问题 解答题
已知|
a
|=1,
a
b
=
1
2
,(
a
-
b
)•(
a
+
b
)=
1
2
,求:
(1)
a
b
的夹角;
(2)
a
-
b
a
+
b
的夹角的余弦值.
答案

(1)∵(

a
-
b
)•(
a
+
b
)=
1
2
,∴
a
2
-
b
2
=
1
2

又∵|

a
|=1,∴12-|
b
|2=
1
2
,解得|
b
|=
2
2

a
b
=
1
2

cos<

a
b
>=
a
b
|
a
||
b
|
=
1
2
2
2
=
2
2

a
b
的夹角为
π
4

(2)由(1)可得|

a
-
b
|=
a
2
+
b
2
-2
a
b
=
12+(
2
2
)2-2×
1
2
=
2
2

|

a
+
b
|=
a
2
+
b
2
+2
a
b
=
12+(
2
2
)2+2×
1
2
=
10
2

cos<

a
-
b
a
+
b
>=
(
a
-
b
)•(
a
+
b
)
|
a
-
b
||
a
+
b
|
=
1
2
2
2
×
10
2
=
5
5

a
-
b
a
+
b
的夹角的余弦值为
5
5

单项选择题
单项选择题