问题 解答题
已知直线l:x-ny=0(n∈N*),圆M:(x+1)2+(y+1)2=1,抛物线φ:y=(x-1)2,又l与M交于点A、B,l与φ交于点C、D,求
lim
n→∞
|AB|2
|CD|2
答案

设圆心M(-1,-1)到直线l的距离为d,则d2=

(n-1)2
n
+1

又r=1,∴|AB|2=4(1-d2)=

8n
1+
n

设点C(x1,y1),D(x2,y2),

x-ny=0
y=(x-1)2
⇒nx2-(2n+1)x+n=0,

∴x1+x2=,x1•x2=1.

∵(x1-x22=(x1+x22-4x1x2=

4n+1
n
,(y1-y22=(
x1
n
-
x2
n
2=
4n+1
n4

∴|CD|2=(x1-x22+(y1-y22

=

1
n4
(4n+1)(n2+1).

lim
n→∞
|AB |2
|CD|2
=
lim
n→∞
8n5
(4n+1)(n2+1)2
=
lim
n→∞
8
(4+
1
n
)(1+
1
n
)
2
=2.

多项选择题
问答题 简答题