问题
解答题
已知直线l:x-ny=0(n∈N*),圆M:(x+1)2+(y+1)2=1,抛物线φ:y=(x-1)2,又l与M交于点A、B,l与φ交于点C、D,求
|
答案
设圆心M(-1,-1)到直线l的距离为d,则d2=
.(n-1)2
+1n 2
又r=1,∴|AB|2=4(1-d2)=
.8n 1+ n 2
设点C(x1,y1),D(x2,y2),
由
⇒nx2-(2n+1)x+n=0,x-ny=0 y=(x-1)2
∴x1+x2=,x1•x2=1.
∵(x1-x2)2=(x1+x2)2-4x1x2=
,(y1-y2)2=(4n+1 n 2
-x1 n
)2=x2 n
,4n+1 n4
∴|CD|2=(x1-x2)2+(y1-y2)2
=
(4n+1)(n2+1).1 n4
∴lim n→∞
=|AB |2 |CD|2 lim n→∞
=8n5 (4n+1)(n2+1)2 lim n→∞
=2.8 (4+
)(1+1 n
)21 n