问题
解答题
已知数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*). (1)求{bn}的通项公式; (2)求
|
答案
(1)n=1时,由(n-1)an+1=(n+1)(an-1),得a1=1.
n=2时,a2=6代入得a3=15.同理a4=28,
再代入bn=an+n,有b1=2,b2=8,b3=18,b4=32,由此猜想bn=2n2.
要证bn=2n2,只需证an=2n2-n.
①当n=1时,a1=2×12-1=1成立.
②假设当n=k时,ak=2k2-k成立.
那么当n=k+1时,由(k-1)ak+1=(k+1)(ak-1),得ak+1=
(ak-1)k+1 k-1
=
(2k2-k-1)=k+1 k-1
(2k+1)(k-1)=(k+1)(2k+1)=2(k+1)2-(k+1).k+1 k-1
∴当n=k+1时,an=2n2-n正确,从而bn=2n2.
(2)
(lim n→∞
+1 b2-2
+…+1 b3-2
)1 bn-2
=
(lim n→∞
+1 6
+…+1 16
)1 2n2-2
=1 2
[lim n→∞
+1 1×3
+…+1 2×4
]1 (n-1)(n+1)
=1 4
[1-lim n→∞
+1 3
-1 2
+…+1 4
-1 n-1
]1 n+1
=1 4
[1+lim n→∞
-1 2
-1 n
]1 n+1
=
.3 8