问题 解答题
已知数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*).
(1)求{bn}的通项公式;
(2)求
lim
n→∞
1
b2-2
+
1
b3-2
+
1
b4-2
+…+
1
bn-2
)的值.
答案

(1)n=1时,由(n-1)an+1=(n+1)(an-1),得a1=1.

n=2时,a2=6代入得a3=15.同理a4=28,

再代入bn=an+n,有b1=2,b2=8,b3=18,b4=32,由此猜想bn=2n2

要证bn=2n2,只需证an=2n2-n.

①当n=1时,a1=2×12-1=1成立.

②假设当n=k时,ak=2k2-k成立.

那么当n=k+1时,由(k-1)ak+1=(k+1)(ak-1),得ak+1=

k+1
k-1
(ak-1)

=

k+1
k-1
(2k2-k-1)=
k+1
k-1
(2k+1)(k-1)=(k+1)(2k+1)=2(k+1)2-(k+1).

∴当n=k+1时,an=2n2-n正确,从而bn=2n2

(2)

lim
n→∞
1
b2-2
+
1
b3-2
+…+
1
bn-2

=

lim
n→∞
1
6
+
1
16
+…+
1
2n2-2

=

1
2
lim
n→∞
[
1
1×3
+
1
2×4
+…+
1
(n-1)(n+1)
]

=

1
4
lim
n→∞
[1-
1
3
+
1
2
-
1
4
+…+
1
n-1
-
1
n+1
]

=

1
4
lim
n→∞
[1+
1
2
-
1
n
-
1
n+1
]

=

3
8

单项选择题 A1/A2型题
单项选择题