问题
填空题
已知曲线C:f(x)=x3-ax+a,若过曲线C外一点A(1,0)引曲线C的两条切线,它们的倾斜角互补,则a的值为______.
答案
函数f(x)的导数为f'(x)=3x2-a,…(2分)
知f'(x)=3x2-a,过点A(1,0)作曲线C的切线,
设切点(x0,f(x0)),则切线方程为:y=(3x0-a)(x-1)…(9分)
将(x0,f(x0))代入得:f(x0)=
-ax0+a即2 x 30
-3x0=0 (*)x 30
解得x0=0或x0=
…(12分)3 2
故满足条件的切线只有两条,且它们的斜率分别为-a与
-a,27 4
因为两条切线的倾斜角互补,所以-a+
-a=0,解得a=27 4
. …(14分)27 8
故答案为:
.27 8