问题
选择题
若an是(1+x)n+1(n∈N*)展开式中含x2项的系数,则
|
答案
∵a1=C22=1,a2=
=C 23
=3,a3=3×2 2×1
=C 24
=6,…,an=4×3 2×1
=C 2n+1
,(n+1)n 2×1
∴
(lim n→∞
+1 a1
+…+1 a2
)=1 an
(lim n→∞
+2 2×1
+2 3×2
+…+2 4×3
)2 (n+1)×n
=2
[(1-lim n→∞
)+(1 2
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n
)]1 n+1
=2
(1-lim n→∞
)1 n+1
=2lim n→∞ n n+1
=2.
故选A.