问题 选择题
若an是(1+x)n+1(n∈N*)展开式中含x2项的系数,则
lim
n→∞
1
a1
+
1
a2
+…+
1
an
)=(  )
A.2B.1C.
1
2
D.0
答案

∵a1=C22=1,a2=

C23
=
3×2
2×1
=3,a3=
C24
=
4×3
2×1
=6,…,an=
C2n+1
=
(n+1)n
2×1

lim
n→∞
1
a1
+
1
a2
+…+
1
an
)=
lim
n→∞
(
2
2×1
+
2
3×2
+
2
4×3
+…+
2
(n+1)×n
)

=2

lim
n→∞
[(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)]

=2

lim
n→∞
(1-
1
n+1
)

=2

lim
n→∞
n
n+1

=2.

故选A.

单项选择题
单项选择题