问题
填空题
|
答案
当n为偶数时,
lim n→∞ 1+
+1 2
+…+1 22 1 2n 1-
+1 2
-…+(-1)n•1 22 1 2n
=lim n→∞ 1×(1-(
)n)1 2 1- 1 2 (1+
+1 22
+…+1 24
) -(1 2n
+1 2
+…+1 23
) 1 2n-1
=lim n→∞ 2- 2 2n
-1- 1 2 n 2 1- 1 2
(1-1 2
)1 2 n 2 1- 1 2
=lim n→∞
=2.2- 2 2n 2-
-1+2 2 n 2 1 2 n 2
当n为奇数时,
lim n→∞ 1+
+1 2
+…+1 22 1 2n 1-
+1 2
-…+(-1)n•1 22 1 2n
=lim n→∞ 1- 1 2n 1- 1 2 (1+
+1 22
+…+1 24
) -(1 2n-1
+1 2
+…+1 23
) 1 2n
=lim n→∞ 2- 2 2n
-1- 1 2 n+1 2 1- 1 2
(1-1 2
)1 2 n-1 2 1- 1 2
=lim n→∞ 2- 2 2n 2-
-1+2 2 n+1 2 1 2 n-1 2
=2.
∴lim n→∞
=2.1+
+1 2
+…+1 22 1 2n 1-
+1 2
-…+(-1)n•1 22 1 2n
答案:2