问题 填空题
lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n
=______.
答案

当n为偶数时,

lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n

=

lim
n→∞
1×(1-(
1
2
)
n
)
1-
1
2
(1+
1
22
+
1
24
+…+
1
2n
) -(
1
2
+
1
23
+…+
1
2n-1
)   

=

lim
n→∞
2-
2
2n
1-
1
2
n
2
1-
1
2
-
1
2
(1-
1
2
n
2
)
1-
1
2

=

lim
n→∞
2-
2
2n
2-
2
2
n
2
-1+
1
2
n
2
=2.

当n为奇数时,

lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n

=

lim
n→∞
1-
1
2n
1-
1
2
(1+
1
22
+
1
24
+…+
1
2n-1
) -(
1
2
+
1
23
+…+
1
2n
)    

=

lim
n→∞
2-
2
2n
1-
1
2
n+1
2
1-
1
2
-
1
2
(1-
1
2
n-1
2
)
1-
1
2

=

lim
n→∞
2-
2
2n
2-
2
2
n+1
2
-1+
1
2
n-1
2

=2.

lim
n→∞
1+
1
2
+
1
22
+…+
1
2n
1-
1
2
+
1
22
-…+(-1)n
1
2n
=2.

答案:2

写作题
问答题 简答题