问题 解答题

已知函数f(x)=2x3-3x2+3.

(1)求曲线y=f(x)在点x=2处的切线方程;

(2)若关于x的方程f(x)+m=0有三个不同的实根,求实数m的取值范围.

答案

(1)当x=2时,f(2)=7

故切点坐标为(2,7)

又∵f′(x)=6x2-6x.

∴f′(2)=12

即切线的斜率k=12

故曲线y=f(x)在点(2,f(2))处的切线方程为y-7=12(x-2)

即12x-y-17=0

(2)令f′(x)=6x2-6x=0,解得x=0或x=1

当x<0,或x>1时,f′(x)>0,此时函数为增函数,

当0<x<1时,f′(x)<0,此时函数为减函数,

故当x=0时,函数f(x)取极大值3,

当x=1时,函数f(x)取极小值2,

若关于x的方程f(x)+m=0有三个不同的实根,则2<-m<3,即-3<m<-2

故实数m的取值范围为(-3,-2)

单项选择题 A1/A2型题
单项选择题