问题
解答题
设a1,a2,…,an为实数,证明:
|
答案
证明:不妨设a1≤a2≤…≤an,则由排序原理得:
a12+a22+…+an2=a1a1+a2a2+…+anan
a12+a22+…+an2≤a1a2+a2a3+…+ana1
a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2
…
a12+a22+…+an2≤a1an+a2a1+…+anan-1.
将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,
上式两边除以n2,并开方可得:
≤a1+a2+…+an n
.a 21
+…++a 22 a 2n n