问题 填空题
在解决问题:“证明数集A={x|2<x≤3}没有最小数”时,可用反证法证明.假设a(2<a≤3)是A中的最小数,则取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,与假设中“a是A中的最小数”矛盾!那么对于问题:“证明数集B={x|x=
n
m
,m,n∈N*,并且n<m}
没有最大数”,也可以用反证法证明.我们可以假设x=
n0
m0
是B中的最大数,则可以找到x'=______(用m0,n0表示),由此可知x'∈B,x'>x,这与假设矛盾!所以数集B没有最大数.
答案

证明数集B={x|x=

n
m
,m,n∈N*,并且n<m}没有最大数”,可以用反证法证明.

假设x=

n0
m0
是B中的最大数,则可以找到x'=
n0+1
m0+1

,n0+1<m0+1,n0+1∈N*,m0+1∈N*,且x'>x,

这与假设矛盾!所以数集B没有最大数.

故答案为:

n0+1
m0+1

单项选择题
单项选择题