问题 选择题
棱长为1的正四面体内切球的表面积为(  )
A.
π
6
B.
π
4
C.
3
2
π
D.
π
3
答案

设正四面体S-ABCD如图所示,

可得它的内切球的球心0必定在高线SH上

延长AH交BC于点D,则D为BC的中点,连结SD则内切球切SD于点E,连结AO

∵H是正三角形ABC的中心

∴AH:HD=2:1

∵Rt△0AHRt△DSH

OA
OH
=
DS
DH
=3,可得OA=30H=S0

因此,SH=4OH,可得内切球的半径OH=

1
4
SH

∵正四面体棱长为1

∴Rt△SHD中,SD=

3
2
,HD=
1
3
SD=
3
6

可得SH=

SD2-HD2
=
6
3
,得内切球的半径r=OH=
1
4
×
6
3
=
6
12

因此正四面体内切球的表面积为S=4πr2=

π
6

故选:A

单项选择题
多项选择题