问题 解答题
已知函数f(x)=
1
3
x3-x2-3x在x1、x2处分别取得极大值和极小值,记点M(x1,f(x1))N(x2,f(x2)).
(1)求x1,x2的值;
(2)证明:线段MN与曲线f(x)存在异于M、N的公共点.
答案

解法一:∵函数f(x)=

1
3
x3-x2-3x在x1,x2(x1<x2)处取得极值,记点M(x1,f(x1)),N(x2,f(x2)),

f'(x)=x2-2x-3,

的两个根为x1,x2

由f'(x)=x2-2x-3=0,得x1=-1,x2=3(3分)

令f'(x)>0,x>3或x<-1,f(x)的单调增区间为(-∞,-1)和(3,+∞),f'(x)<0,-1<x<3,单调减区间为(-1,3)(5分)

所以函数f(x)在x1=-1.x2=3处取得极值.

(2)由(1)可知,M(-1,

5
3
).N(3,-9)(7分)

所以直线MN的方程为y=-

8
3
x-1(8分)

y=
1
3
x3-x2-3x
y=-
8
3
x-1
得x3-3x2-x+3=0,(9分)

令F(x)=x3-3x2-x+3,易得F(0)=3>0,F(2)=-3<0,(11分)

而F(x)的图象在(0,2)内是一条连续不断的曲线,故F(x)在(0,2)内存在零点x0,这表明线段MN与曲线f(x)有异于M,N的公共点.(12分)

解法二:同解法一,可得直线MN的方程为y=-

8
3
x-1(8分)

y=
1
3
x3-x2-3x
y=-
8
3
x-1
得x3-3x2-x+3=0(9分)

解得x1=-1,x2=1.x3=3,

x1=-1
y1=
5
3
x2=1
y2=-
11
3
x3=3
y3=-9
(11分)

所以线段MN与曲线f(x)有异于M,N的公共点(1,-

11
3
).(12分)

单项选择题 B1型题
单项选择题