问题
选择题
若f′(x0)=2,则
|
答案
∵f′(x0)=2,
∴lim k→0 f(x0-k)-f(x0) 2k
=
-lim k→0
•1 2 f(x0-k)-f(x0) -k
=-1 2 lim k→0 f(x0-k)-f(x0) -k
=-
f′(x0)=-1 2
×2=-1.1 2
故选:C.
若f′(x0)=2,则
|
∵f′(x0)=2,
∴lim k→0 f(x0-k)-f(x0) 2k
=
-lim k→0
•1 2 f(x0-k)-f(x0) -k
=-1 2 lim k→0 f(x0-k)-f(x0) -k
=-
f′(x0)=-1 2
×2=-1.1 2
故选:C.