问题
选择题
函数y=2x2-3x上点(1,-1)处的切线方程为( )
A.x-y+2=0
B.x-y-2=0
C.x-2y-3=0
D.2x-y-3=0
答案
∵y=2x2-3x,
∴y′=4x-3,
∴k=y′|x=1=4-3=1,
∴函数y=2x2-3x上点(1,-1)处的切线方程为y+1=x-1,
整理得x-y-2=0.
故选B.
函数y=2x2-3x上点(1,-1)处的切线方程为( )
A.x-y+2=0
B.x-y-2=0
C.x-2y-3=0
D.2x-y-3=0
∵y=2x2-3x,
∴y′=4x-3,
∴k=y′|x=1=4-3=1,
∴函数y=2x2-3x上点(1,-1)处的切线方程为y+1=x-1,
整理得x-y-2=0.
故选B.