问题
选择题
曲线y=-x3+x2在点(1,0)处的切线的倾斜角为( )
A.45°
B.60°
C.120°
D.135°
答案
∵y=-x3+x2,
∴y′=-3x2+2x,
x=1时,y′=-1.
∵tan135°=-1,
∴曲线y=-x3+x2在点(1,0)处的切线的倾斜角为135°.
故选D.
曲线y=-x3+x2在点(1,0)处的切线的倾斜角为( )
A.45°
B.60°
C.120°
D.135°
∵y=-x3+x2,
∴y′=-3x2+2x,
x=1时,y′=-1.
∵tan135°=-1,
∴曲线y=-x3+x2在点(1,0)处的切线的倾斜角为135°.
故选D.