问题
解答题
(1)当n∈N+时,求证:
(2)当n∈N+时,求证:1+
|
答案
(1)证明:∵
+1 2n
+1 2n
+…+1 2n
≤1 2n
+1 n+1
+…+1 n+2
<1 2n
+1 n
+…+1 n
,1 n
∴
≤1 2
+1 n+1
+…+1 n+2
<1,故不等式成立.1 2n
(2)证明:∵1+
+1 22
+…+1 32
<1+1 n2
+1 1×2
+1 2×3
+…+1 3×4 1 (n-1)×n
=1+1-
+1 2
-1 2
+1 3
-1 3
+…+1 4
-1 n-1
=2-1 n
<2,1 n
即 1+
+1 22
+…+1 32
<2.1 n2