问题
解答题
设x>0,y>0,z>0, (Ⅰ)比较
(Ⅱ)利用(Ⅰ)的结论,证明:
|
答案
(Ⅰ)∵
-x2 x+y
=3x-y 4
≥0,∴(x-y)2 4(x+y)
≥x2 x+y
.(5分)3x-y 4
(Ⅱ)由(1)得
≥x3 x+y
.3x2-xy 4
类似的
≥y3 y+z
,3y2-yz 4
≥z3 z+x
,(7分)3z2-zx 4
又x2+y2+z2-(xy+yz+zx)=
[(x-y)2+(y-z)2+(z-x)2]≥0;1 2
∴x2+y2+z2≥xy+yz+zx(9分)(另证:x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx,三式相加).
∴
+x3 x+y
+y3 y+z
≥z3 z+x
=3x2-xy+3y2-yz+3z2-zx 4
≥3(x2+y2+z2)-xy-yz-zx 4
=3(xy+yz+zx)-xy-yz-zx 4
(12分)xy+yz+zx 2