问题 解答题

f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N+).

(1)请写出fn(x)的表达式(不需证明);

(2)求fn(x)的极小值;

(3)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,求a-b的最小值.

答案

(1)由题意可得,f1(x)=(x+1)•exf2(x)=(x+2)•exf3(x)=(x+3)•ex,…,

猜测出fn(x)的表达式fn(x)=(x+n)•ex(n∈N*)

(2)由(1)可知,fn(x)=(x+n)•ex(n∈N*)

fn(x)=(x+n+1)•ex

令f′n(x)=0,解得x=-(n+1),

∵当x>-(n+1)时,f'n(x)>0,当x<-(n+1)时,f'n(x)<0,

∴当x=-(n+1)时,fn(x)取得极小值fn(-(n+1))=-e-(n+1)

即fn(x)的极小值为yn=-e-(n+1)(n∈N*)

(3)∵gn(x)=-x2-2(n+1)x-8n+8

∴当x=-(n+1)时,gn(x)取最大值,即a=gn(-(n+1))=(n-3)2

又∵b=fn(-(n+1))=-e-(n+1)

∴a-b=(n-3)2+e-(n+1)

问题转化为求cn=(n-3)2+e-(n+1)的最小值.

解法1(构造函数):

令h(x)=(x-3)2+e-(x+1)(x≥0),

则h'(x)=2(x-3)-e-(x+1),又h(x)在区间[0,+∞)上单调递增,

∴h'(x)≥h'(0)=-6-e-1

又∵h'(3)=-e-4<0,h'(4)=2-e-5>0,

∴存在x0∈(3,4)使得h'(x0)=0,

又h'(x)在区间[0,+∞)上单调递增,

∴0≤x<x0时,h'(x0)<0,当x>x0时,h'(x0)>0,

即h(x)在区间[x0,+∞)上单调递增,在区间[0,x0)上单调递减,

∴(h(x))min=h(x0).

又∵h(3)=e-4,h(4)=1+e-5,则h(4)>h(3),

∴当n=3时,a-b取得最小值e-4′

解法2(利用数列的单调性):

cn+1-cn=2n-5+

1
en+2
-
1
en+1

∴当n≥3时,2n-5≥1,

1
en+2
>0,
1
en+1
<1

2n-5+

1
en+2
-
1
en+1
>0,

∴cn+1>cn

c1=4+

1
e2
c2=1+
1
e3
c3=
1
e4
,c1>c2>c3

∴当n=3时,a-b取得最小值e-4

单项选择题 A1型题
单项选择题