问题
解答题
求证:2<(1+
|
答案
证明:(1+
)n=Cn0+Cn1×1 n
+Cn2(1 n
)2+…+Cnn(1 n
)n1 n
=1+1+Cn2×
+Cn3×1 n2
+…+Cnn×1 n3 1 nn
=2+
×1 2!
+n(n-1) n2
×1 3!
+…+n(n-1)(n-2) n3
×1 n! n×(n-1)××2×1 nn
<2+
+1 2!
+1 3!
+…+1 4!
<2+1 n!
+1 2
+1 22
+…+1 23 1 2n-1
=2+
=3-(
[1-(1 2
)n-1]1 2 1- 1 2
)n-1<3.1 2
显然(1+
)n=1+1+Cn2×1 n
+Cn3×1 n2
+…+Cnn×1 n3
>2.1 nn
所以2<(1+
)n<3.1 n