问题
选择题
当1<x<4时,化简
|
答案
∵1<x<4,
∴x-1>0,x-4<0,
∴原式=
-(x-1)2 (x-4)2
=|x-1|-|x-4|
=x-1-(4-x)
=x-1-4+x
=2x-5.
故选C.
当1<x<4时,化简
|
∵1<x<4,
∴x-1>0,x-4<0,
∴原式=
-(x-1)2 (x-4)2
=|x-1|-|x-4|
=x-1-(4-x)
=x-1-4+x
=2x-5.
故选C.